
1

ENG SC757 - Advanced Microprocessor Design

Babak Kia
Adjunct Professor
Boston University
College of Engineering
Email: bkia -at- bu.edu

Introduction to
Embedded System Design

Microcontrollers
A Microcontroller is essentially a small and self-
sufficient computer on a chip, used to control devices
It has all the memory and I/O it needs on board
Is not expandable – no external bus interface
Characteristics of a Microcontroller
• Low cost, on the order of $1
• Low speed, on the order of 10 KHz – 20 MHz
• Low Power, extremely low power in sleep mode
• Small architecture, usually an 8-bit architecture
• Small memory size, but usually enough for the type of

application it is intended for. Onboard Flash.
• Limited I/O, but again, enough for the type of application

intended for

Microprocessors
A Microprocessor is fundamentally a collection of
on/off switches laid out over silicon in order to perform
computations
Characteristics of a Microprocessor
• High cost, anywhere between $20 - $200 or more!
• High speed, on the order of 100 MHz – 4 GHz
• High Power consumption, lots of heat
• Large architecture, 32-bit, and recently 64-bit architecture
• Large memory size, onboard flash and cache, with an

external bus interface for greater memory usage
• Lots of I/O and peripherals, though Microprocessors tend

to be short on General purpose I/O

2

Harvard Architecture
Harvard Architecture refers to a memory structure
where the processor is connected to two different
memory banks via two sets of buses
This is to provide the processor with two distinct data
paths, one for instruction and one for data
Through this scheme, the CPU can read both an
instruction and data from the respective memory
banks at the same time
This inherent independence increases the throughput
of the machine by enabling it to always prefetch the
next instruction
The cost of such a system is complexity in hardware
Commonly used in DSPs

Von-Neumann Machine
A Von-Neumann Machine, in contrast to the Harvard
Architecture provides one data path (bus) for both
instruction and data
As a result, the CPU can either be fetching an
instruction from memory, or read/writing data to it
Other than less complexity of hardware, it allows for
using a single, sequential memory.
Today’s processing speeds vastly outpace memory
access times, and we employ a very fast but small
amount of memory (cache) local to the processor
Modern processors employ a Harvard Architecture to
read from two instruction and data caches, when at the
same time using a Von-Neumann Architecture to access
external memory

Little vs. Big Endian
Although numbers are always displayed in the same
way, they are not stored in the same way in memory
Big-Endian machines store the most significant byte of
data in the lowest memory address
Little-Endian machines on the other hand, store the
least significant byte of data in the lowest memory
address

A Little-Endian machine
stores 0x12345678 as:

ADD+0: 0x78
ADD+1: 0x56
ADD+2: 0x34
ADD+3: 0x12

A Big-Endian machine
stores 0x12345678 as:

ADD+0: 0x12
ADD+1: 0x34
ADD+2: 0x56
ADD+3: 0x78

3

Little vs. Big Endian
The Intel family of Microprocessors and processors
from Digital Equipment Corporation use Little-Endian
mode
Whereas Architectures from Sun, IBM, and Motorola
are Big-Endian
Architectures such as PowerPC, MIPS, and Intel’s IA-
64 are Bi-Endian, supporting either mode
Unfortunately both methods are in prevalent use
today, and neither method is superior to the other
Interfacing between Big and Little Endian machines
can be a headache, but this is generally only a concern
for TCP/IP stack and other interface developers

Program Counter (PC)
The Program Counter is a 16 or 32 bit register which
contains the address of the next instruction to be
executed
The PC automatically increments to the next
sequential memory location every time an instruction
is fetched
Branch, jump, and interrupt operations load the
Program Counter with an address other than the next
sequential location
During reset, the PC is loaded from a pre-defined
memory location to signify the starting address of the
code

Reset Vector
The significance of the reset vector is that it points the
processor to the memory address which contains the
firmware’s first instruction
Without the Reset Vector, the processor would not
know where to begin execution
Upon reset, the processor loads the Program Counter
(PC) with the reset vector value from a pre-defined
memory location
On CPU08 architecture, this is at location
$FFFE:$FFFF
A common mistake which occurs during the debug
phase – when reset vector is not necessary – the
developer takes it for granted and doesn’t program
into the final image. As a result, the processor doesn’t
start up on the final product.

4

Stack Pointer (SP)
The Stack Pointer (SP), much like the reset vector, is
required at boot time for many processors
Some processors, in particular the 8-bit
microcontrollers automatically provide the stack
pointer by resetting it to a predefined value
On a higher end processor, the stack pointer is usually
read from a non-volatile memory location, much like
the reset vector
For example on a ColdFire microprocessor, the first
sixteen bytes of memory location must be
programmed as follows:

0x00000000: Reset Vector
0x00000008: Stack Pointer

COP Watchdog Timer
The Computer Operating Properly (COP) module is a
component of modern processors which provides a
mechanism to help software recover from runaway
code
The COP, also known as the Watchdog Timer, is a free-
running counter that generates a reset if it runs up to a
pre-defined value and overflows
In order to prevent a watchdog reset, the user code
must clear the COP counter periodically.
COP can be disabled through register settings, and
even though this is not good practice for final firmware
release, it is a prudent strategy through the course of
debug

The Infinite Loop

Embedded Systems, unlike a PC, never “exit”
an application
They idle through an Infinite Loop waiting for
an event to happen in the form of an
interrupt, or a pre-scheduled task
In order to save power, some processors
enter special sleep or wait modes instead of
idling through an Infinite Loop, but they will
come out of this mode upon either a timer or
an External Interrupt

5

Interrupts

Interrupts are mostly hardware mechanisms
which tell the program an event has occurred
They happen at any time, and are therefore
asynchronous to program flow
They require special handling by the
processor, and are ultimately handled by a
corresponding Interrupt Service Routine (ISR)
Need to be handled quickly. Take too much
time servicing an interrupt, and you may miss
another interrupt.

Designing an Embedded System
Proposal
Definition
Technology Selection
Budgeting (Time, Human, Financial)
Material and Development tool purchase
Schematic Capture & PCB board design
Firmware Development & Debug
Hardware Manufacturing
Testing: In-Situ, Environmental
Certification: CE
Firmware Release
Documentation
Ongoing Support

System Design Cycle

Writing code conjures up visions of
sleepless nights and stacked up boxes
of pizza
And if not done correctly, that is
exactly what the outcome will be!
The purpose of the design cycle is to
remind and guide the developer to step
within a framework proven to keep you
on track and on budget

6

System Design Cycle

There are numerous design cycle
methodologies, of which the following
are most popular
• The Spaghetti Model
• The Waterfall Model
• Top-down versus Bottom-up
• Spiral Model
• GANTT charts

The Spaghetti Model

Not in this course, thank you.

The Waterfall Model
Waterfall is a software development model in which
development is seen flowing steadily through the
phases of
• Requirement Analysis
• Design
• Implementation
• Testing
• Integration
• Maintenance

Advantages are good progress tracking due to clear
milestones
Disadvantages are its inflexibility, by making it difficult
to respond to changing customer needs / market
conditions

7

Top-down versus Bottom-up

The Top-Down Model analyses the overall
functionality of a system, without going into
details
• Each successive iteration of this process then

designs individual pieces of the system in greater
detail

The Bottom-Up Model in contrast defines the
individual pieces of the system in great detail
• These individual components are then interfaced

together to form a larger system

The Spiral Model

Modern software design practices such as
the Spiral Model employ both top-down and
bottom-up techniques
Widely used in the industry today
For a GUI application, for example, the Spiral
Model would contend that
• You first start off with a rough-sketch of

user interface (simple buttons & icons)
• Make the underlying application work
• Only then start adding features and in a

final stage spruce up the buttons & icons

The Spiral Model

In this course, we won’t focus on the
aesthetic qualities of the application -
only the underlying technology

8

GANTT Chart

GANTT Chart is simply a type of bar chart
which shows the interrelationships of how
projects and schedules progress over time

Design Metrics
Metrics to consider in designing an
Embedded System
• Unit Cost: Can be a combination of cost to

manufacture hardware + licensing fees
• NRE Costs: Non Recurring Engineering costs
• Size: The physical dimensions of the system
• Power Consumption: Battery, power supply,

wattage, current consumption, etc.
• Performance: The throughput of the system, its

response time, and computation power
• Safety, fault-tolerance, field-upgradeability,

ruggedness, maintenance, ease of use, ease of
installation, etc. etc.

Schematic Capture

9

PCB Layout

PCB Board

Portions of this power point presentation may have been taken from relevant users and technical manuals. Original content Copyright © 2005 – Babak Kia

